

Clearing the Air: Livestock's Contributions to Climate Change

Frank Mitloehner, PhD Assoc Prof & UC CE Specialist Animal Science, UC Davis

GHG & GWP

Global Warming Potential (GWP) of Main GHG

- Carbon Dioxide, CO₂
- Methane, CH₄21
- Nitrous Oxide, N₂O 310

CO2 – Carbon Dioxide CH4 – Methane

N2O - Nitrous Oxide

Livestock's Long Shadow (FAO, 2006)

LLS predictions are global not regional

- 18% of all anthropogenic GHG from livestock
- 9% of all carbon dioxide (CO₂)
- 40% of all methane (CH₄)
- 65% of all nitrous oxide (N₂O)

"Livestock's Long Shadow" predictions and it's misinterpretations

- "The Livestock sector is a major player, responsible for 18% of GHG emissions measured in CO₂e. This is a higher share than transport" (FAO 2006)
- "Which is responsible for more global warming: your BMW or your Big Mac? Believe it or not, it's your Big Mac" (Time, 2007)
- "A 16 oz T-bone is like a hummer on a plate. Switching to vegetarianism can shrink your carbon footprint by 1.5 tons of CO₂e per year" (Time, 2007)

Sources of GHG from Ag

- Enteric fermentation (CH₄)
- Land application of manure (N₂O)
- Manure storage and treatment (CH₄ and N₂O)
- Leading CH₄ source is enteric fermentation from ruminants
- Leading N₂O source is land incorporated manure and fertilizer

Global big picture

Source: IPCC 4AR, 2004

Reports summarized

UN-FAO:

Livestock's Long Shadow (LLS)

<u>Livestock</u> as portion of emissions -1 ~7,100 Tg CO2-eg yr

US-EPA:

Inventory of U.S. Greenhouse Gas Emissions and Sinks

Agriculture as portion of emissions -1 414 Tg CO2-eq yr

CEC:

California GHG Inventory

Agriculture as portion of emissions
-1
27 Tg CO2-eq yr

If true, livestock is a greater source of GHGs than the transportation sector (FAO, 2006)

Global livestock distribution

Distribution of cropland

Total GHG emissions from enteric fermentation and manure per species and main production system

Forest transition and land degradation in dry lands

Deforestation in the amazon for livestock production accounts for ~1/3 of the total GHG due to livestock

Livestock Production Systems and land-use change

U.S. – the big GHG picture

Source: EPA (2009)

US GHG emissions from livestock

California GHG inventory

California GHG inventory

- All GHG sources in California = 500 MMT CO₂e
- Transport = 190 MMT CO_2e
- Energy industry = $170 \text{ MMT CO}_2\text{e}$
- Agriculture (all sectors) = 27 MMT
 CO₂e
- Dairy (enteric and waste) = 11.2
 MMT CO₂e

Livestock emissions enteric fermentation

UN-FAO:

Livestock's Long Shadow (LLS)

US-EPA:

Inventory of U.S. **Greenhouse Gas Emissions**

and Sinks

CEC:

California GHG Inventory

7 Tg CO2-eq yr

Livestock emissions animal manure

UN-FAO:

Livestock's Long Shadow (LLS)

US-EPA:

Inventory of U.S. Greenhouse Gas **Emissions and Sinks**

CEC:

California GHG Inventory

7 Tg CO2-eq yr

Livestock emissions land-use change

UN-FAO:

Livestock's Long Shadow (LLS)

US-EPA:

Inventory of U.S. Greenhouse Gas Emissions and Sinks

CEC:

California GHG Inventory

Net sequestration of agricultural land and forest land

Clearing the Air: Livestock's Contributions to Climate Change

Maurice Pitesky, Kim Stackhouse, and Frank Mitloehner

Advances in Agronomy, Vol 103

Conclusions

- Global meat production will double by 2050 (mainly developing world)
- Growth will occur in areas that are currently forested
- Livestock in developed countries has relatively small GHG contribution dwarfed by large transportation, energy, and industry
- In developing countries livestock can be a dominant contributor to the GHG portfolio due deforestation and to their relatively smaller transportation and energy sectors

Conclusions

- According to Livestock's Long Shadow, intensification provides "large opportunities for climate change mitigation, can reduce greenhouse gas emissions from deforestation," and is the long-term solution to more sustainable livestock production
- In the United States, transportation accounts for at least 26% of total anthropogenic GHG emissions compared to roughly 6-8% for all of agriculture, which includes less than 3% associated with livestock production

Conclusion

 The significant change that affects carbon levels in the United States is the conversion of agricultural lands to development, which reduces land available for carbon sequestration

